Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(36): 85125-85138, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37380852

RESUMO

Understanding the sources and characteristics of PM2.5-bound PAHs from traffic-related pollution can provide valuable data for mitigating air contamination from traffic in local urban regions. However, little information on PAHs is available regarding the typical arterial highway-Qinling Mountains No.1 tunnel in Xi'an. We estimated the profiles, sources, and emission factors of PM2.5-bound PAHs in this tunnel. The total PAH concentrations were 22.78 ng·m-3 and 52.80 ng·m-3 at the tunnel middle and exit, which were 1.09 and 3.84 times higher than that at the tunnel entrance. Pyr, Flt, Phe, Chr, BaP, and BbF were the dominant PAH species (representing approximately 78.01% of total PAHs). The four rings PAHs were dominant (58%) among the total PAH concentrations in PM2.5. The results demonstrated that diesel and gasoline vehicles exhaust emissions contributed 56.81% and 22.60% to the PAHs, respectively, while the corresponding value for together brakes, tyre wear, and road dust was 20.59%. The emission factors of total PAHs were 29.35 µg·veh-1·km-1, and emission factors of 4 rings PAHs were significantly higher than those of the other PAHs. The sum of ILCR was estimated to be 1.41×10-4, which accorded with acceptable level of cancer risk (10-6-10-4), PAHs should not ignored as they still affect the public health of inhabitants. This study shed light on PAH profiles and traffic-related sources in the tunnel, thereby facilitating the assessment of control measures targeting PAHs in local areas.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Medição de Risco , Emissões de Veículos/análise , China , Poeira/análise , Material Particulado/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-36767540

RESUMO

The Fenwei Plain (FWP) remains one of the worst PM2.5-polluted regions in China, although its air quality has improved in recent years. To evaluate the regional transport characteristics of PM2.5 emitted by coal-fired power plants in the FWP in wintertime, the primary PM2.5, SO2, and NOx emissions from coal-fired power plants with large units (≥300 MW) in 11 cities of the area in January 2019 were collected based on the Continuous Emission Monitoring System (CEMS). The spatial distribution and source contribution of primary and secondary PM2.5 concentrations were investigated using the Weather Research and Forecast (WRF) model and the California Puff (CALPUFF) model. The results showed that secondary PM2.5 was transported over a larger range than primary PM2.5 and that secondary nitrate was the main component of the total PM2.5 concentration, accounting for more than 70%. High concentrations of primary, secondary, and total PM2.5 mainly occurred in the Shaanxi region of the FWP, especially in Xianyang, where the PM2.5 concentrations were the highest among the 11 cities, even though its pollutant emissions were at moderate levels. The PM2.5 concentrations in Sanmenxia and Yuncheng primarily came from regional transport, accounting for 64% and 68%, respectively, while those in other cities were dominated by local emissions, accounting for more than 63%. The results may help to understand the regional transport characteristics of pollutants emitted from elevated point sources over a complex terrain.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Poluentes Atmosféricos/análise , Material Particulado/análise , Carvão Mineral , Monitoramento Ambiental/métodos , China , Cidades , Centrais Elétricas
3.
Environ Res ; 211: 113036, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35283079

RESUMO

As critical precursors of tropospheric ozone (O3) and secondary organic aerosol (SOA), volatile organic compounds (VOCs) largely influence air quality in urban environments. In this study, measurements of 102 VOCs at all five major cities in the Guanzhong Plain (GZP) were conducted during Sep.09-Oct. 13, 2017 (autumn) and Nov. 14, 2017-Jan. 19, 2018 (winter) to investigate the characteristics of VOCs and their roles in O3 and SOA formation. The average concentrations of total VOCs (TVOCs) at Xi'an (XA), Weinan (WN), Xianyang (XY), Tongchuan (TC), and Baoji (BJ) sites were in the range of 55.2-110.2 ppbv in autumn and 42.4-74.3 ppbv in winter. TVOCs concentrations were reduced by 22.4%-43.5% from autumn to winter at XA, WN and BJ. Comparatively low concentrations of TVOCs were observed in XY and TC, ranging from 53.5 to 62.7 ppbv across the sampling period. Alkanes were the major components at all sites, accounting for 26.4%-48.9% of the TVOCs during the sampling campaign, followed by aromatics (4.2%-26.4%). The average concentration of acetylene increased by a factor of up to 4.8 from autumn to winter, indicating the fuel combustion in winter heating period significantly impacted on VOCs composition in the GZP. The OH radical loss rate and maximum incremental reactivity method were employed to determine photochemical reactivities and ozone formation potentials (OFPs) of VOCs, respectively. The VOCs in XA and WN exhibited the highest reactivities in O3 formation, with the OFP of 168-273 ppbv and the OH loss rates of 19.3-40.8 s-1. Alkenes and aromatics primarily related to on-road and industrial emissions contributed 57.8%-76.3% to the total OFP. The contribution of aromatics to the SOA formation at all sites reached 94.1%-98.6%. Considering the potential source-area of VOCs, regional transport of VOCs occurred within the GZP cities.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Ozônio/análise , Compostos Orgânicos Voláteis/análise
4.
Huan Jing Ke Xue ; 43(1): 140-149, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989498

RESUMO

Volatile organic compounds (VOCs) are the main precursors of tropospheric O3 and secondary organic aerosol (SOA), which can enhance atmospheric oxidation, promote the formation of secondary pollutants, and affect regional air quality and human health. In order to gain insights on VOCs characteristics and their potentials for O3 and SOA formation, the volume fraction of 102 VOCs in autumn and winter in the urban area of Tongchuan were monitored using the TH-300B online monitoring system. The maximum incremental reactivity (MIR) coefficient and the fractional aerosol coefficient (FAC) were used to estimate the ozone formation potential (OFP) and SOA formation potential (SOAFP), respectively. The φ(TVOC, total VOCs) were (50.52±16.81)×10-9 in autumn and (63.21±35.24)×10-9 in winter. The OFPs were 138.43×10-9 in autumn and 137.123×10-9 in winter, and the SOAFPs were 3.098 µg·m-3 and 0.612 µg·m-3, respectively. Alkanes (26.19%) and aromatics (26.04%) were the most abundant species in autumn, and alkanes (48.88%) were the most abundant species in winter. Trans-2-pentene, toluene, and m/p-xylene were the most reactive species in terms of OFPs in autumn, and ethylene, acetylene, and propylene were the top three species contributing to the total OFPs in winter. Toluene, m/p-xylene, and ethylbenzene contributed the most to the total SOAFPs in both of autumn and winter. Traffic emissions were considered as the major source of VOCs in both seasons. VOCs from biomass/coal combustion emissions showed seasonal differences, which were more prominent in winter. The results can provide references for the "one city, one policy" to mitigate regional VOCs pollution and improve ambient air quality.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Humanos , Ozônio/análise , Estações do Ano , Compostos Orgânicos Voláteis/análise
5.
Environ Res ; 203: 111821, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34370988

RESUMO

Frequent ozone and fine particulate matter (PM2.5) pollution have been occurring in the Guanzhong Plain in China. To effectively control the tropospheric ozone and PM2.5 pollution, this study performed measurements of 102 VOCs species from Sep.19-25 (autumn) and Nov.27-Dec. 8, 2017 (winter) at Weinan in the central Guanzhong Plain. The total volatile organic compounds (TVOCs) concentrations were 95.8 ± 30.6 ppbv in autumn and 74.4 ± 37.1 ppbv in winter. Alkanes were the most abundant group in both of autumn and winter, accounting for 33.5% and 39.6% of TVOCs concentrations, respectively. The levels of aromatics and oxygenated VOCs were higher in autumn than in winter, mainly due to changes in industrial activities and combustion strength. Photochemical reactivities and ozone formation potentials (OFPs) of VOCs were calculated by applying the OH radical loss rate (LOH) and maximum incremental reactivity (MIR) method, respectively. Results showed that Alkenes and aromatics were the key VOCs in term ozone formation in Weinan, which together contributed 59.6% ̶ 65.3% to the total LOH and OFP. Secondary organic aerosol formation potentials (SOAFP) of the measured VOCs were investigated by employing the fractional aerosol coefficient (FAC) method. Aromatics contributed 94.9% and 96.2% to the total SOAFP in autumn and winter, respectively. The regional transport effects on VOCs and ozone formation were investigated by using trajectory analysis and potential source contribution function (PSCF). Results showed that regional anthropogenic sources from industrial cities (Tongchuan, Xi'an city) and biogenic sources from Qinling Mountain influenced VOCs levels and OFP at Weinan. Future studies need to emphasize on meteorological factors and sources that impact on VOCs concentrations in Weinan.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Ozônio/análise , Compostos Orgânicos Voláteis/análise
6.
Chemosphere ; 286(Pt 2): 131703, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34352541

RESUMO

Exposure to phthalates poses adverse health impacts to human beings. In this study, we analyzed 7 phthalates in dust samples, which were collected with vacuum cleaner from 40 to 31 residences in Beijing in summer and winter, respectively. The major phthalates (median concentration in the summer and winter, respectively) were DiBP (55 and 40 ng/mg), DnBP (99 and 30 ng/mg) and DEHP (795 and 335 ng/mg). The concentrations were significantly influenced by season and residence time of house dust. The concentrations of phthalates in dust on plastic surfaces were highest, followed by those on wooden and fabric surfaces. The dust-air partition coefficients (Kd) were calculated: the median values were 0.13, 0.02 and 5.62 m3/mg in the summer and 0.06, 0.018 and 0.76 m3/mg in the winter for DiBP, DnBP and DEHP, respectively. A comparison with Kd* at equilibrium state suggested that partition between air and dust deviated from equilibrium state in both seasons. The results also revealed that dust-phthalates in the summer may completely originate from source materials via direct transfer and external physical process; while dust-phthalates in the winter may come from both air (via partition) and source material (via direct transfer and external physical process). The influence of temperature on dust-phthalate concentrations differed by season, owing to different origin of dust-phthalates in two seasons. Polar organic components in dust, which are products of reactions between O3 and unsaturated hydrocarbons in dust, likely played an important role in fate and transport of phthalates. The presence of them resulted in the significant associations between dust-phthalate concentrations and air humidity in the summer. Moreover, the impacts of indoor PM2.5 concentrations, traffic conditions surrounding residence, household lifestyle and number of occupants were also observed. The mechanisms behind those observations were discussed.


Assuntos
Poluição do Ar em Ambientes Fechados , Ácidos Ftálicos , Poluição do Ar em Ambientes Fechados/análise , China , Poeira/análise , Exposição Ambiental/análise , Humanos , Ácidos Ftálicos/análise
7.
Sci Total Environ ; 783: 147101, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34088135

RESUMO

This study reported the emission factors (EFs) and detailed chemical compositions of PM2.5 collected from China IV and China V light-duty vehicles (LDVs) through dynamometer test. The China IV LDVs containing 4 gasoline vehicles (GVs) and 4 natural gas vehicles (NGVs) had port fuel injection (PFI) engines, while the China V LDVs included 2 GVs with PFI engines and 2 GVs with gasoline direct injection (GDI) engines. The average EFs of PM2.5 were 1.90 ± 0.70 mg km-1, 1.44 ± 0.29 mg km-1, and 0.56 ± 0.05 mg km-1 for China IV GVs, China IV NGVs, and China V GVs, respectively. PM2.5 profiles of LDVs were characterized by abundant carbon species (60.59-68.58%) with low amounts of water soluble ions (WSIs, 6.96-16.37%) and elements (5.20-7.53%). In general, the EFs of PM2.5 constituents including organic carbon (OC), elemental carbon (EC), WSIs, and elements were reduced obviously by strengthening emission standards from China IV to China V. While the contributions of most WSIs and elements to PM2.5 increased as vehicle technology improved. Furthermore, the EFs of PM2.5 components from China IV LDVs also decreased when shifting fuels from gasoline to natural gas. While the fractions of OC, WSIs and most elements in PM2.5 increased due to the highest reduction rate of EC mass. For China V LDVs, GDI vehicles emitted less OC but more EC compared to PFI vehicles, and the EFs of most WSIs and elements also increased. Overall, GDI vehicles exhibited lower fractions OC and WSIs but higher contents of EC and elements in PM2.5. Besides, PM2.5 and its chemical species were heavily dependent on vehicle's driving patterns. The average EFs of PM2.5 components under aggressive driving pattern increased significantly compared to those under moderate driving pattern.

8.
Environ Monit Assess ; 193(4): 164, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675429

RESUMO

Alternative-fueled vehicles have been introduced to solve the problem of the energy crisis and address air pollution. However, typical pollutants (e.g., methane and methanol) are emitted through combustion of the alternative fuel. In this study, the concentrations of regulated pollutants (CO, NO) and unregulated pollutants (CH4, methanol, formaldehyde, and 8 NMHC species) in the exhaust from methanol, CNG, and gasoline-fueled vehicles (MV, NGV, and GV) were measured systematically on a chassis dynamometer during an in-use vehicle driving cycle. The emission factors of these gaseous pollutants were calculated, and the ozone formation potential (OFP) of each ozone precursor measured in this work was evaluated with the MIR scale. The results showed that NO and NMHC species exhausted from the MV and NGV decreased significantly than that from the GV. However, the unburned pollutants exhausted from MV and NGV warrant attention. For the OFPs, CO was the largest contributor for all tested vehicles. Formaldehyde was ranked the second for the MV and NGV. Among the tested vehicles, the OFPs of NGV were the lowest. The results are helpful in quantitating analysis of the vehicle emissions and evaluating the impacts of alternative-fueled vehicles on atmospheric environment.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Ozônio , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Gasolina/análise , Metanol , Veículos Automotores , Ozônio/análise , Emissões de Veículos/análise
9.
Environ Sci Pollut Res Int ; 28(16): 19810-19821, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33410038

RESUMO

Size, morphology, and composition of airborne particles strongly affect human health and visibility, precipitation, and the kinetic characteristics of particles. In this study, the morphology and chemical composition of particles emitted from conventional (diesel and gasoline) and alternative (CNG and methanol) fuel vehicles were characterized through scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The SEM images revealed that the size of primary particles (without agglomeration) was approximately 10 nm in the exhaust from all the tested vehicles. The particles emitted from gasoline vehicle (GV), CNG vehicle (CNGV), and methanol vehicle (MV) had the same median diameter, 62 nm, which was smaller than those from heavy diesel vehicle (HDV) and light diesel vehicle (LDV). Soot was observed in the HDV, LDV, and GV samples but not in the CNGV and MV. The fractal dimension, which was used to quantify the degree of irregularity of soot, was 1.752 ± 0.014, 1.789 ± 0.076, and 1.769 ± 0.006 in the exhaust from HDV, LDV, and GV samples, respectively. The particles discharged by all tested vehicles contained the elements C, O, Fe, and Na. The main element in the samples of HDV, LDV, and GV was C, while O was the main element in the samples of alternative fuel vehicles. The profiles of minor elements were more complex in the emissions of alternative fuel vehicles than those in the emissions of conventional fuel vehicles. The results improved our understanding of the morphology and elemental composition of particles emitted from vehicles powered by diesel, gasoline, CNG, and methanol.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Gasolina/análise , Humanos , Veículos Automotores , Tamanho da Partícula , Material Particulado/análise , Emissões de Veículos/análise
10.
Environ Pollut ; 269: 116187, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33316495

RESUMO

Vehicular emissions contribute significantly to air pollution, and the number of vehicles in use is continuing to rise. Policymakers thus need to formulate vehicular emission reduction policies to improve urban air-quality. This study used different vehicle control scenarios to predict the associated potential of mitigating carbon monoxide (CO), volatile organic compounds (VOCs), nitrogen oxide (NOx), particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5), and particulate matter with an aerodynamic diameter less than 10 µm (PM10) in Xi'an China, in 2020 and 2025. One business-as-usual scenario and six control scenarios were established, and vehicular emission inventory was developed according to each scenario. The results revealed that eliminating high-emission vehicles and optimizing after-treatment devices would effectively reduce vehicular emissions. In addition, increasing the number of alternative fuel vehicles, restraining vehicle use, and restraining the growth of the vehicle population would all have certain effects on CO and VOCs emissions, but the effects would not be significant for NOx, PM2.5, and PM10. The results also indicated that if all control measures were stringently applied together, emissions of CO, VOCs, NOx, PM2.5, and PM10 would be reduced by 51.66%, 51.58%, 30.19%,71.12%, and 71.81% in 2020, and 53.55%, 51.44%, 19.09%, 54.88%, and 55.51%, in 2025, respectively.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , China , Monitoramento Ambiental , Material Particulado/análise , Emissões de Veículos/análise
11.
Chemosphere ; 254: 126782, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32339798

RESUMO

Exposure to phthalates has recently become a major public health concern. The information of indoor airborne phthalates and their air-particle partition in real indoor environmental condition is still limited. In this study, the gas- and PM2.5-concentrations of 7 phthalates in 40 residences were concurrently measured in summer and winter. The major phthalates (median concentration in the summer and winter, respectively) in indoor air were DMP (2442.3 and 2403.4 ng/m3), DiBP (801.0 and 640.0 ng/m3) and DnBP (5173.2 and 1379.6 ng/m3), whereas the major phthalates in PM2.5 were DiBP (1055.1 and 585.9 ng/m3) and DnBP (1658.5 and 1517.0 ng/m3) and DEHP (215.1 and 344.9 ng/m3). Air-PM2.5 partition coefficients (Kp) of DiBP, DnBP and DEHP were calculated: the summer and winter median values (m3/µg) were 0.053 and 0.011 for DiBP, 0.010 and 0.004 for DnBP, 0.021 and 0.025 for DEHP, respectively. Air-PM2.5 partition of DiBP and DnBP approached equilibrium, while that of DEHP did not reach equilibrium in either season. The impacts of built environmental conditions on phthalate concentrations were characterized. Elevated temperature resulted in accumulation of airborne phthalates. Higher air humidity led to more water absorption of aerosols in summer, facilitated mass transfer of phthalates from air to PM2.5, and resulted in greater Kp of DiBP and DnBP in the summer. Any factors such as proximity to local traffic highway and indoor smoking activities, which can increase indoor PM2.5 concentrations, resulted in significantly higher airborne phthalate concentrations. Improving ventilation was not an effective measure to reduce indoor airborne phthalate concentrations.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Ácidos Ftálicos/análise , 2,4-Dinitrofenol/análogos & derivados , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Habitação , Humanos , Estações do Ano , Água
12.
Sci Total Environ ; 674: 128-139, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31004890

RESUMO

Vehicle emissions are affected by factors such as vehicle type, fuel quality, and engine repair. Therefore, mobile source profiles should be established based on a characteristic fleet for a specific region. This study characterised the chemical composition of PM2.5 emitted from motor vehicles that are commonly used in Xi'an through dynamometer tests. The tested fleet included light duty diesel vehicles (LDDVs; eight sample sets), heavy duty diesel vehicles (HDDVs; six sample sets), light duty gasoline vehicles (LDGVs; eight sample sets), one natural gas vehicle (NGV; four sample sets) and one methanol vehicle (MV; two sample sets). Similarities and differences among the source profiles were compared and evaluated. Overall, carbon species (13.14-59.11%) were the major components of PM2.5 for each type of vehicle, and the content of organic carbon (OC) was generally higher than that of elemental carbon (EC). Moreover, NO3- (18.577-220.062 mg·g-1) was the dominant water-soluble ion and the Ca2+ (2.429-17.209 mg·g-1) and Na+ (1.966-20.798 mg·g-1) contents in PM2.5 were high. In terms of elements, the PM2.5 emitted from various types of vehicles consisted of abundant Al (2.183-94.949 mg·g-1), Fe (0.567-12.297 mg·g-1), and Zn (0.659-5.195 mg·g-11). In addition, the PM2.5 profiles were significantly affected by fuel type. In general, emissions from the LDGVs and NGV exhibited higher contents of OC (477.0-479.1 mg·g-1). The greatest fractions of water-soluble ions (32.94%) and total elements (11.74%) were observed in emissions from the NGV and MV, respectively. For the same type of vehicle, the OC/EC ratio was possibly dependent on the emission standards. The PM2.5 emitted from the LDDVs with stricter emission standards exhibited higher OC/EC ratios, whereas the OC/EC ratios displayed a decreasing trend for the LDGVs under more stringent emission standards.

13.
Environ Pollut ; 243(Pt B): 1930-1942, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30237031

RESUMO

Frequent low visibility, haze pollution caused by heavy fine particulate matter (PM2.5) loading, has been entailing significant environmental issues and health risks in China since 2013. A substantial fraction of bioaerosols was observed in PM (1.5-15%) during haze periods with intensive pollution. However, systematic and consistent results of the variations of bioaerosol characteristics during haze pollution are lacking. The role of bioaerosols in air quality and interaction with environment conditions are not yet well characterized. The present article provides an overview of the state of bioaerosol research during haze episodes based on numerous recent studies over the past decade, focusing on concentration, size distribution, community structure, and influence factors. Examples of insightful results highlighted the characteristics of bioaerosols at different air pollution levels and their pollution effects. We summarize the influences of meteorological and environmental factors on the distribution of bioaerosols. Further studies on bioaerosols, applying standardized sampling and identification criteria and investigating the influence of mechanisms of environmental or pollution factors on bioaerosols as well as the sources of bioaerosols are proposed.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Poluição do Ar/análise , Bactérias/isolamento & purificação , Monitoramento Ambiental/métodos , Fungos/isolamento & purificação , Material Particulado/química , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Meteorologia , Material Particulado/análise , Tempo (Meteorologia)
14.
Huan Jing Ke Xue ; 39(8): 3580-3590, 2018 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-29998664

RESUMO

To investigate the exposure to major air pollutants of runners while running in Beijing, the concentrations of PM2.5, CO, O3, and NO2 were constantly monitored at typical park running areas (Tiantan Park and Olympic Sports Center), roadside running areas (Qianmen East Street and Yongding Inner Street), and a background area (Dinglin) during April, June, and October of 2016 and in January 2017. The concentration variation characteristics for the pollutants in different areas and at different times were analyzed. Using a numerical model of human respiratory exposure, 102 joggers were studied, as was the temporal-spatial variation of inhalation dose of pollutants. At typical running areas, the concentrations of CO, NO2, and PM2.5 were relatively higher in winter, whereas the concentrations of O3 were higher in spring and summer. The concentrations of CO, NO2, and PM2.5 were lower in the afternoon (16:00-18:00), whereas the concentrations of O3 were lower in the morning (06:00-08:00) and evening (18:00-20:00). There was a linear correlation between concentrations roadside to those in nearby parks, as the concentrations of CO roadside were generally consistent with those in parks (croad/cpark=1.01, R2=0.93), the concentrations of NO2 and PM2.5 roadside were higher than those in parks (croad/cpark were 0.56 and 1.19, respectively), and the concentrations of O3 roadside were lower than those in parks (croad/cpark=0.74, R2=0.97). During moderate or higher pollution conditions, 92% of joggers halted outdoor activities, 62.7% chose to jog in parks, 66.7% chose to jog at night, and 64.7% of joggers had single run mileages of 10-20 km. When people chose to jog in the afternoon and evening, the inhalation of CO, NO2, and PM2.5 were relatively lower, whereas the inhalation of O3 was higher. During spring and summer, night running after 20:00 reduced the O3 inhalation dose. Running roadside led to higher inhalation of CO, NO2, and PM2.5 than that in parks; however, O3 inhalation was lower.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Exposição por Inalação/análise , Corrida , Poluição do Ar , Pequim , Monóxido de Carbono , Humanos , Óxido Nítrico , Ozônio , Material Particulado
15.
Sci Total Environ ; 637-638: 244-252, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29753222

RESUMO

Serious air pollution events have frequently occurred in China associated with the acceleration of urbanization and industrialization in recent years. Exposure to atmospheric particulate matter (PM) of high concentration can lead to adverse effects on human health. Airborne bacteria are important constituents of microbial aerosols and contain lots of pathogens. However, variations in bacterial community structure in atmospheric PM of different sizes (PM2.5, PM10 and TSP) have not yet been explored. In this study, PM samples of different sizes were collected during the hazy days from Jul.2016 to Apr.2017 to determine bacterial diversity and community structure. Samples from soils and leaf surfaces were also collected to determine potential sources of bacterial aerosols. High-throughput sequencing technology was used generate bacterial community profiles, where we determined their diversity and abundances in the samples. Results showed that the dominant bacterial community structures in PM2.5, PM10 and TSP were strongly similar. Compared with non-haze days, the relative abundances of most bacterial pathogens on the haze days did not increase. Meanwhile, temperature, O3 and NO2 had more significant effects on bacterial community than the other environmental factors. Source tracking analysis indicated that the airborne bacteria might be not from local environment. It may come from the entire city or other regions by long distance airflow transport. Results of this study improved our understanding of the influence of bioaerosols on human health and the potential sources of airborne microbes.


Assuntos
Microbiologia do Ar , Poluentes Atmosféricos/análise , Bactérias , Monitoramento Ambiental , Material Particulado/análise , Poluição do Ar/estatística & dados numéricos , China , Cidades , Humanos
16.
Environ Monit Assess ; 188(6): 367, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27220506

RESUMO

Intercity bus terminals are hotspots of air pollution due to concentrated activities of diesel buses. In order to evaluate the bus terminals' impact on air quality, it is necessary to estimate the associated mobile emission inventories. Since the vehicles' operating condition at the bus terminal varies significantly, conventional calculation of the emissions based on average emission factors suffers the loss of accuracy. In this study, we examined a typical intercity bus terminal-the Southern City Bus Station of Xi'an, China-using a multi-scale emission model-(US EPA's MOVES model)-to quantity the vehicle emission inventory. A representative operating cycle for buses within the station is constructed. The emission inventory was then estimated using detailed inputs including vehicle ages, operating speeds, operating schedules, and operating mode distribution, as well as meteorological data (temperature and humidity). Five functional areas (bus yard, platforms, disembarking area, bus travel routes within the station, and bus entrance/exit routes) at the terminal were identified, and the bus operation cycle was established using the micro-trip cycle construction method. Results of our case study showed that switching to compressed natural gas (CNG) from diesel fuel could reduce PM2.5 and CO emissions by 85.64 and 6.21 %, respectively, in the microenvironment of the bus terminal. When CNG is used, tail pipe exhaust PM2.5 emission is significantly reduced, even less than brake wear PM2.5. The estimated bus operating cycles can also offer researchers and policy makers important information for emission evaluation in the planning and design of any typical intercity bus terminals of a similar scale.


Assuntos
Poluição do Ar/análise , Monitoramento Ambiental/métodos , Modelos Teóricos , Veículos Automotores , Emissões de Veículos/análise , Poluentes Atmosféricos , China , Cidades , Gasolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA